The C. difficile's S-layer structure and assembly

Paola Lanzoni-Mangutchi¹, Anna Barwinska-Sendra¹, Oishik Banerji², Jason Wilson², Filipa Vaz³, BugSlayer Consortium^{1,2,3}, Paula S. Salgado¹

Newcastle ¹ Newcastle University Biosciences Institute, Newcastle University, UK

University ² Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK ³ Institute of Infection, Immunity and Inflammation, University of Glasgow, UK

P.Lanzoni2@ncl.ac.uk

1. Introduction

C. difficile's cell benefits from an additional layer of protection, the S-layer, a proteinaceous layer that completely covers the cell wall [1]. Working primarily as a molecular sieve, it is also mediates adhesion to host gut and immune response. SlpA is the C. difficile's S-layer main protein. It comprises two subunits, HMW SLP (SLP_H) and LMW SLP (SLP_L), that interacts via the interacting domain LID/HID [2]. Recently, a new class of antimicrobials based on bacteriocins [3], was able to selectively attack C. difficile by targeting SIpA, making it a promising but so far unexploited target in the combat to C. difficile infection.

Our aims are the determination of SIpA 3D structure and its assembly into a functional S-layer

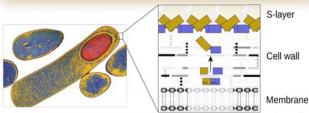


Fig 1. The S-layer is proteinaceous coat for the C. difficile cell. Detailed production of an S-layer by processing SlpA into SLP_L (gold) and SLP_H (slate blue) and their arrengement into 2D layer.

2. In crystallo SIpA structure and array resembles in vivo S-layer

A. The SlpA crystal structure

- SlpA forms 2D plate-like crystals.
- Crystal packing shows stacks of SlpA layers.
- SlpA subunits interact via a double-sandwich folding formed by LID/HID.

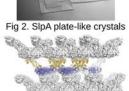


Fig. 4. The SIpA crystal structure. SLPL (slate blue) interacts with SLPH (gold) via

LID/HID (dashed rectangle). The CWB2 domains (triangle) (a) in SLP_H subunit interacts with the cell wall while SLPL is exposed to the environment (b).

B. The S-layer envelope determined by electron microscopy explains the SIpA 2D layer assembly

- Extracted S-layer forms S-layer ghosts.
- EM-micrograph on S-layer ghosts shows a rugged double-layer.
- EM reconstruction validates crystal SlpA layer.

Fig 5. S-layer ghosts

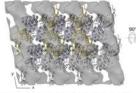


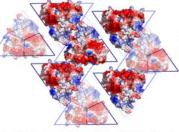
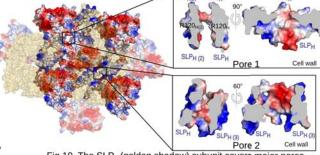
Fig 6. EM-micrograph Fig 7. EM reconstruction fit to crystal

Fig 8. EM reconstruction fit to crystal mode. Side view

Legend

3. S-layer relies on electrostatic interactions forming hydrophilic pores

- CWB2 domains form triangular prisms on cell surface.
- Inter-molecule interactions mainly formed via electrostatic forces.
- The SLP_L and interacting domains are responsible for closing the gaps between CWB2 prisms.
- Only 2 hydrophilic pores allow direct contact between cell and environment.

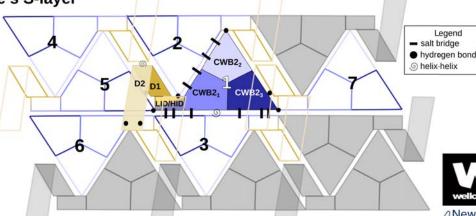

Fig. 9. Electrostatic profile in CWB2 domains, in SLP_H subunit.

Fig 10. The SLP_L (golden shadow) subunit covers major pores.

4. The overall model of C. difficile's S-layer

- The CWB2 domains bears of most interactions - majority salt bridges mediated by lysines.
- Salt bridges allow a strong and stable maintenance of the S-layer while still allowing some room to flexibility and fluidity.
- The pores are highly hydrophobic and negatively charged - small positively charged molecules would be easier to pass.

Fig. 11. The *C. difficile* S-layer model and main interactions. Molecule 1 forms interactions with 6 others to maintain layer stability and cover pores. The CWB2 domain in SLP_H References [1]Fagan et al. Nat Rev Microbiol. 2014 Mar;12(3):211-22

[2]Fagan et al. Mol Microbiol. 2009 Mar;71(5):1308-22. [3]Kirk et al. Sci Transl Med. 2017 September 06; 9(406).

mediates the majority of hydrogen bonds (circle) and all salt bridges (bars). Two highly conserved helices interact with itself on two different points in SIpA (whirls).