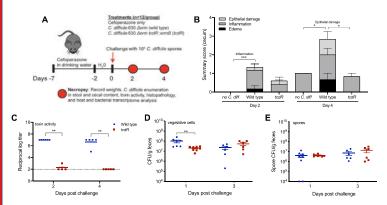
Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota

College of Veterinary Medicine

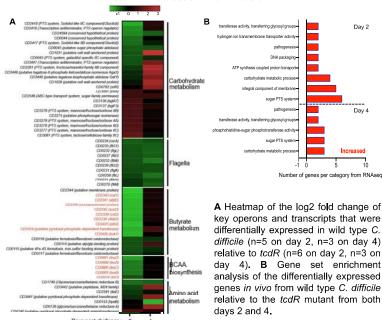
cmpike@ncsu.edu

Fletcher, J.R.¹, Pike, C.M.¹, Parsons, R.J.¹ Rivera, A.J.¹, Foley, M.H.¹, Montgomery S.A², Theriot, C.M.¹

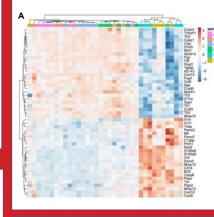

Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, North Carolina State University, Raleigh, NC ²Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC

Introduction

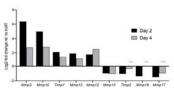
Clostridioides difficile infection (CDI) is a significant public health problem associated with increasing morbidity, mortality, and health-care related costs around the globe. CDI is characterized by a robust immune response caused by two large toxins, resulting in extensive tissue damage by weakening the mucosal barrier and exacerbating inflammation. Toxins are expressed under nutrient-limiting conditions, leading us to hypothesize that toxins induce inflammation to gain access to a different pool of nutrients. Using a toxin-deficient mutant strain of C. difficile in a mouse model, we used an omics approach to define how toxin-induced inflammation alters C. difficile metabolism, tissue gene expression, and the gut microbiota to determine if host inflammation provides an alternative niche for C. difficile.


Results

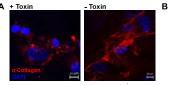
Inflammation is attenuated in tcdR mice in a mouse model of C. difficile infection

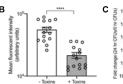

A Schematic depicting experimental design. All mice (n=36) received the antibiotic cefoperazone in their drinking water. Subsets were orally gavaged with wild type (n=12) or tcdR (n=12) after antibiotic treatment.). B Histopathological summary scores of the cecum. C C. difficile vegetative cell CFUs in feces (n=6-8 per strain). D C. difficile spore CFUs in the feces (n=6-8 per strain). **E** Toxin activity in the cecal content of mice (n=4-6).

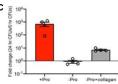
Metabolic gene expression in C. difficile is significantly altered by toxin-mediated inflammation



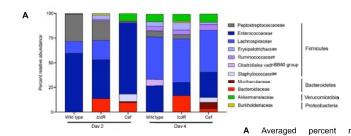
Results

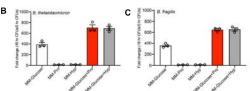

C. difficile induces expression of numerous transcripts associated with inflammation and ECM degradation



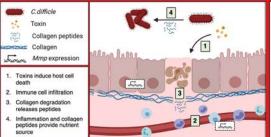

Heatmap of the top 50 differentially regulated transcripts (by adj. p value) in the ceca of uninfected controls, wild type mice, and tcdR mice (n=5-6 per treatment and time point). B Log2 fold changes of various Mmps and associated transcripts from wild type vs. tcdR mouse ceca.

Toxin-mediated degradation of collagen supports C. difficile growth in vitro





Collagen (red) produced by IMR90 cells and DAPI (blue); scale bar, 10 µm, B Mean fluorescent intensity of collagen produced by IMR90 cells cultured in the presence or absence of toxins calculated using ImageJ. "***" denotes p < 0.001 by by Mann-Whitney rank-sum test. **C** C. difficile grown in complete CDMM, CDMM lacking proline, or CDMM lacking proline and supplemented with heat-degraded collagen.


C. difficile toxin activity suppresses the Bacteroidaceae that are able to compete with C. difficile for amino acids.

abundance of Family-level ASVs in each treatment group per timepoint. ASVs with less than 1% relative abundance in all samples were not included B, C 16 hour fold change in CFUs of B. thetaiotaomicron and B. fragilis in minimal media with or without glucose, supplemented with either proline or hydroxyproline

Model Funding

NIH NIGMS R35 GM119438 NIH NIGMS K01 GM109236 UNC CGIBD T32DK07737 NCSU CVM internal pilot

< nanoString