INVESTIGATING CLOSTRIDIOIDES DIFFICILE CYTOTOXICITY IN THE PHYSIOLOGICALLY
RELEVANT HUMAN INTESTINAL ENTEROID MODEL
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Abstract Results Results Results
Background. Clostrdioides difficile is a nosocomial pathogen that produces loxins o cause lfe threatening C. difficile strains exhibit differences in their genome HIEs are less responsive than Vero cells to Purified toxin A and B cause rapid cell rounding In
larrhea and colitis. Toxins bind cell surface receptors, are endocytosed, and inactivate GTP-binding proteins,
leading to the collapse of the actin cytoskeleton. These cytoskeletal alterations produce a cell rounding and t())(in gen es purifiEd C dlff|C||e tOXiﬂ A and B Monkey K|dney FibrObIaStS VerO Ce”S
phenotype that has been used as a measure of C. difficile toxin activity in a cancer-derived and immortalized cell
lines. However, the biological relevance of these model systems is limited. To date, few studies have examined Genome Analvsis | HIE Cell Reenonse to TedA C. difficile Toxin A 4 hr

the distribution of C. difficile toxin receptors in the human small intestine or examined toxin sensitivity. We
hypothesized that human intestinal enteroids (HIES), as the most physiologically relevant in vitro model system i
available, expresses the native toxin receptors and provide a new model to dissect C. difficile cytotoxicity in the R20291 |[T{™™

small intestine, providing insights into CDI-enteritis. Methods & Results: We generated biopsy-derived jejunal
HIE and Vero cells which stably express LifeAct-Ruby, a fluorescently label of F-actin, to monitor actin M6ES mmm
cytoskeleton rearrangement by live-cell microscopy. Imaging analysis revealed that toxins from pathogenic C.
difficile strains (R20291, 630, M68) elicited cell rounding in a strain-dependent manner. Interestingly, HIES were -y & ' P
tenfold more sensitive to toxin A (0.001 yg/ml) than toxin B (0.01 ug/ml). HIEs were also less sensitive to toxins — 630 (™™ | L i Al o 1 P

derived from several C. difficile strains (R20291, 630, M68) or purified toxins when compared to Vero cells. By

gPCR we paradoxically found that jejunal HIEs expressed greater quantities of toxin receptor mRNA compared F“"“W , ‘ o e L LR
with Vero cells, and yet exhibited decreased sensitivity to C. difficile toxins when compared to traditionally used INGn-ToXic [ |
cell lines. We reasoned that these differences may be explained by components, such as mucins, that are
present in HIES cultures that are absent in immortalized cell culture models. Addition of human-derived mucin
MUC2 to Vero cells delayed cell rounding, indicating the mucus serves as a barrier to toxin-receptor binding.
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Conclusions: This work highlights that investigation of C. difficile infection in the human derived enteroid model B & fedR  tcdB tedE tcdA tcdC "  cdtR cdtA cdtB
can provide important insights into the intricate interactions between toxins and the human intestinal epithelium. R20291 =
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which become internalized into enterocytes. Inside the cell, the glycosylatransfer
toxin domain Inactivates Rho/Rac kinase and stimulates actin cytoskeleton
rearrangement (Modified from Bitton & Young 2018).

Hypothesis

Human intestinal enteroids (HIEs), as the most physiologically
relevant in vitro model system, expresses the important native toxin
receptors and provide an ideal model to dissect C. difficile toxin
activity

Fig 9: A. RNAseq of HIEs (untreated) revealed a unique profile of toxin receptors. We
examined binary toxin (CDT) receptor LSR, TcdA receptorGp96, sucrase isomaltase
(Sl), and TcdB receptors [CSPG4, PVRL3, and Frizzled genes FZD]. Heat maps were
generated from FPKM (Fragments Per Kilobase of transcript per Million mapped
reads). B. qPCR analysis of HIEs, Vero, and cancer-derived HelLa, T84, and HT29
cells revealed high expression of toxin receptors in HIEs. Data represented as AACT
normalized to 18S. *P<0.05, One Way ANOVA; n = 3 replicates, 6/experiment.

HIEs secrete MUC2 which acts as a decoy for TcdA

Methods and TcdB
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Fig 2. Methods for testing hypothesis. Human Intestinal Enteroids (HIEs) derived CD37, M68, 630, or R20291. Insets indicate significant rounding occurs with toxigenic Time (hrs) - LS174T goblet-
from jejunum were lentivirus transduced with LifeAct-Ruby labeling F-actin. HIEs C. difficile strains (M68, 630, and R20291). B. FIJI (Formerly Image J) software was Fig 7: A. Vero cells were transduced with the LifeAct-Ruby sensor, which labels F-actin ke cells. - Scale
were grown in 2D monolayers and treated with purified C. difficile toxins (List U_SGd to define C_e” membranes (as denoted by actin labeling) and cell diameter over with red fluorescent protein. Representative images of LifeAct-Ruby Vero cells over ?ar - 109 Hm. N
biologicals) or toxin-containing fluorobrite supernatant from C. difficile cultures time. C. Resulting curves were assessed for the area under the curve, which time (1-4 hrs) after exposure to Fluorobrite DMEM medium alone or conditioned = 3 replicates/3

(R20291, M68, 630 and non-toxin CD37). HIEs or cells lines were live imaged demonstrates decreased cell diameter with M68, 630, and R20291. *P<0.05, One Way Fluorobrite from C. difficile strains CD37, M68, 630, or R20291. B. Cell diameter experiments.

overnight (16 hr) to assess toxin effects on F-actin. ANOVA; n = 3 replicates/ 6 experiment. analysis. C. Area under the curve analysis. *P<0.05, One Way ANOVA.






