

<sup>1</sup>The Austrian Agency for Health and Food Safety, Vienna, Austria; <sup>2</sup>The 2nd European *Clostridioides difficile* Infection Surveillance Network (ECDIS-Net-2) Consortium; <sup>3</sup> Disease Programme Unit, European Centre for Disease Prevention and Control (ECDC); Solna, Sweden; <sup>4</sup>Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands;

# Cross-sectional survey of *Clostridioides difficile* infection diagnostic and typing capacity in 31 European countries in 2018

#### Background

Suboptimal diagnostic testing for Clostridioides difficile infection (CDI) affects patient management, surveillance and prevention. In 2011 and 2014, ECDC ECDIS-Net surveys in 33 European countries recorded optimal diagnostic practices in 19% and 46% of laboratories, the participating respectively. In 2014, 16/32 (50.0%) countries had capillary-based (CE) PCR ribotyping capacity.

#### Aim of the study

This survey sought to describe European CDI diagnostic and typing capacity in 2018

#### Methods

In December 2018, ECDIS-Net-2 sent a web-based questionnaire on national CDI diagnostic practices, to national-level experts, designated by ECDC's National Focal Points for Healthcare-Associated Infections, in all 37 EU/EA countries. These experts forwarded another web-based questionnaire on local CDI diagnostic practices to local laboratories in their country. In countries with >20 responding laboratories, we randomly selected 20 responses. In total, 364 laboratories participated

No response: Liechtenstein, UK-Scotland, UK-Northern Ireland and the Republic of North Macedonia



## Results

|                                                                | EU/EA countries (n=37) | %   |
|----------------------------------------------------------------|------------------------|-----|
| Changed/updated national CDI diagnostic guidelines since 2014  | 22/37                  | 59% |
| Adopted the 2016 ESCMID diagnostic algorithm                   | 18/23                  | 78% |
| Introduced national CDI surveillance program                   | 9/26                   | 35% |
| Availability of national <i>C. difficile</i> typing laboratory | 25/26                  | 96% |
| Performance of CE-PCR ribotying                                | 22/26                  | 85% |
| Use of ECDC reference panel of PCR ribotypes                   | 16/26                  | 62% |
| Identifies need further training for CE-PCR ribotyping         | 9/37                   | 24% |
| Performs <i>C. difficile</i> susceptibility testing            | 8/37                   | 22% |

|                                     | Microbiological labs (n= 364) | %   |
|-------------------------------------|-------------------------------|-----|
| CDI testing only on physicians      | 169/307                       | 55% |
| request                             |                               |     |
| CDI testing of all hospitalized     | 58/364                        | 16% |
| patients with onset of diarrhea at  |                               |     |
| least 48 h following admission      |                               |     |
| Testing all diarrheal patients ≥ 65 | 32/364                        | 9%  |
| years of age                        |                               |     |
| Testing all diarrheal patients with | 41/364                        | 11% |
| recently completed course of        |                               |     |
| antibiotics shorter than 1 month    |                               |     |
| Use of ESCMID-recommended           | 197/364                       | 54% |
| two-step algorithm to diagnose      |                               |     |
| CDI                                 |                               |     |
| Use of two steps with combined      | 116/197                       | 59% |
| GDH and toxin test as first step    |                               |     |

### Conclusion

Europe has further improved its capacity to diagnose CDI, measure prevalence and identify subtypes, thus permitting better targeting of local and national public health actions.





