Combating *Clostridium difficile* infection with an optimised bacteriophage cocktail

Janet Y. Nale (jn142@le.ac.uk), and Martha R. J. Clokie
Department of Infection, Immunity and Inflammation, University of Leicester, UK

Background
- *Clostridium difficile* infection (CDI) remains a global health challenge due to insufficient treatment options. Bacteriophages or phages (viruses that specifically target and kill bacteria) can provide alternative therapies for CDI.
- We have developed a novel 4-bacteriophage cocktail, that can completely eliminate *C. difficile* in pure cultures and biofilms, and reduce colonisation in hamster and wax moth larva CDI models.
- Here, we describe the activity of the cocktail in a batch fermentation CDI model spiked with combined freshly voided fecal slurries obtained from four healthy volunteers covering diverse ethnic and age groups as the source of human gut microbiota.

Methods
- Four fecal samples were collected from healthy adults: British-born (70 yr) and British-ethnic (70 yr) and from African adolescents (17 yr) and African adults (40 yr).
- Samples were inoculated for bacterial load then mixed in equal proportions to ensure inoculum.
- Mixed fecal slurries were treated with a cocktail of four bacteriophages and/or bacteria at various time points as shown in Table 1.

Aims:
1. To determine the efficacy of an optimised 4-phae cocktail (Fig. 1) to clear cultures of a clinically ribotype 014/020 isolate under competitive pressure from the human gut microbiomes.
2. To determine the potential synergistic or antagonistic effects of phage therapy on other components of the human gut microbiome.

Result 1: Phages are effective at clearing *C. difficile* in the gut model
- Viability assays showed that a diverse range of microbiota was contributed by the donors (Fig. 2).
- We observed 6 and 1 log reductions in *C. difficile* counts in the prophylaxis and remedial regimens respectively within the first 5 h post-infection, and complete eradication of the bacteria at the 24th hour in both regimens (Fig. 3).
- *C. difficile* remained undetected from the 5 h time point, until the experiment was terminated at the 72h hour (Fig. 3).

Result 2: Phages exert no antagonistic effect on other culturable microbiota and promote colonisation of specific components of the gut microbiome
- The commensal Bifidobacteria, Enterococci, Lactobacillales, total Anaerobes and Enterobacteriaceae were not affected by either the prophylactic or remedial regimens (Figs. 4A-E, Table 1).
- However, the phage control (Table 1) showed ~2 log increase of the total Anaerobes and Enterobacteriaceae counts compared to the two regimens and the bacterial/untreated controls at the 24-72 h time points (Fig 4D and E, Table 1).

Result 3: Strong correlation between viability assays and metagenomic data at 24 h
- The percent reads mapped to bacteria, Archaea and viruses are shown in Table 2.
- Although the individual groups of bacteria remained consistent in all treatments, their abundances varied considerably in the vessels (Table 2, Fig. 5).
- Consistent with our viability assays, we observed that percent bacterial abundances of Enterobacteriaceae (marked in red boxes), and Bifidobacteriaceae, Lactobacillales were considerably high in vessel 3 from the metagenomics data (Fig. 5).

Conclusions and future work
This data supports the application of the phage cocktail to prevent/treat CDI. The elevated levels of specific commensals in the phage-treated control (vessel 3) could prevent colonisation of *C. difficile* and provide protection from the infection. Further genetic work is ongoing to produce therapeutically acceptable phages for CDI.

References